
DEEP
LEARNING
IN 2019
FROM EXPERIMENTATION

TO PRODUCTION

Contents

1	 Introduction

2	 Staffing the machine learning team

6	 Level up your ML code from 				

	 notebook to production

10	 What can data scientists learn from 		

	 software engineers?

14	 How to make reproducible 				

	 experiments?

20	The right tools for machine learning

25	Machine learning infrastructure for 		

	 everyone

VALOHAI.COM

http://valohai.com

INTRODUCTION
Welcome to the Deep Learning guide book for 2019! If 2017 was
about data exploration and data lakes, 2018 was definitely about
model exploration and moving towards production ready model
building. Moving from exploration to production-ready model
building requires new ways of thinking to ensure reproducibility
and team work.

This eBook starts from the most important part in your deep
learning: your team. We’ll continue with how to prepare your
code for production ready experimentation. Deep learning code
requires constant experimentation and changes in both the code
as well as the training data before tuning externalized hyper
parameters. We’ll also touch upon one of the most popular ways
of experimenting with deep learning, namely Jupyter Notebooks
and why they aren’t ideal for production-scale deep learning.
Finally we’ll round up with what a deep learning experiment
consists of and how to build reproducible experiments. Lastly
we’ll present the most common deep learning platforms and
how they differ from each other so that you can make a sound
decision on what to build on top of.

We thank all our customers, partners and users from feedback in
building this eBook. Deep Learning has changed tremendously in
the past year and converged more towards the internal platforms
of the technology unicorns that have been built with deep
learning first already years before the rest. Uber’s Michelangelo,
AirBnB’s BigHead, Facebook’s FB Learner Flow and Netflix’ and
Google’s own platforms have all been an inspiration to us at
Valohai as well.

We hope this eBook sheds some lights on the deep learning
scene for 2019!

2

STAFFING THE MACHINE
LEARNING TEAM

Today’s machine learning teams consist of
people with different skill sets. There are a
bunch of different roles that are needed when
you start building production level machine
learning solutions, but first, let’s compare the
two key roles: data scientist vs. machine learning
engineer.

DATA SCIENTIST

Data scientists are people who work with data and build
machine learning models. They clean and interpret data
and build models using a combination of machine learning
algorithms and data.

Data Scientists come often from the academic field and
their background is usually in university research projects.
It might be surprising how big of a technological gap there
is between research and real world production systems.
In theoretical or research settings, repeatability, record

3

keeping, testing and collaboration play a much smaller role
compared to production systems where teams of 10 or
more researchers might work on the same data and models
to optimize.

Researchers have a fixed dataset that they train a model
on and once satisfied with the results, they write a paper
and often never go back to the code ever again or actually
deploy the model at scale for real world use cases.
resources like GPUs.

/ STAFFING THE MACHINE LEARNING TEAM

Real world applications are fundamentally
different in a few major aspects:
•	 Teams are larger

•	 People leave for other companies

•	 New people come in

•	 The world changes, data evolves and

models go stale

•	 Models go into production and

therefore must be tested and monitored

•	 The main driver is long term ROI

instead of getting the research result

These requirements present a host of issues that require
a lot of software infrastructure support. This is mainly
DevOps work that involves building data pipelines,
automated testing, autoscaling computational clusters and
ensuring high availability for serving models.

4

MACHINE LEARNING ENGINEER

Machine learning engineers are the support troops of
researchers and data scientists. Machine learning engineers
rarely touch the models or are interested in the form or
contents of the data they work with.

Machine learning engineers do anything from data lake set
up and management to building easy to use computational
clusters for training and finally ensuring high availability
deployment of models.

Machine learning engineers come from software
development and DevOps backgrounds and have started
to specialize in ML infrastructure. These people are familiar
with containers, container orchestration – tools like Docker
and Kubernetes –, running clusters in various compute
clouds or on-premise and building robust deployment
pipelines.

Machine learning in production is very complicated – in
many ways even more complicated than normal web scale
systems – and you should treat the engineering side with
respect, choose the right tools to support the team and
staff enough to move faster.
In addition, you should not expect data scientists to build
the engineering side of your machine learning stack.
The data and machine learning modelling are vast and
complicated areas of expertise and require a lot of study
on their own.

If you want the most out of your machine learning team,
make sure these two areas work seamlessly together and
staff both sides equally.

/ STAFFING THE MACHINE LEARNING TEAM

YOUR MACHINE LEARNING TEAM

DATA ENGINEER

Takes care of collecting the data and making it
available for the rest of the team. Knows how to
plan maintainable data pipelines and manages
how the data is tested. Good in programming.

MACHINE LEARNING ENGINEER

Transforms models created by the data scientist
for production. Excellent in writing maintainable
code and has a good understanding how
machine learning works.

DATA SCIENCE LEADER

Deep knowledge into data science and is able to
make decisions and lead a team.

DATA SCIENTIST

Explores and tries to understand correlations
in the gathered data. Understands well how
statistics and machine learning works and knows
some programming

PROBLEM DOMAIN EXPERT

Communicates with data scientist about what
different values mean and provides domain
specific knowledge. Understands what needs to
be predicted and why. Some understanding of
machine learning.

6

FROM NOTEBOOK TO
PRODUCTION

There are couple main reasons why we advocate
for using regular, linear Python scripts instead
of Jupyter/IPython notebooks when going from
initial exploration work to production.

Developing a machine learning model for a new project
starts with groundwork and exploration, to understand
your data and figure out the approaches to try. A popular
choice for this groundwork is Jupyter, an environment
where you write Python code interactively. In Jupyter

LEVEL UP YOUR ML CODE

7

notebook’s cells you can evaluate and revise and it is an
attractive, visual choice (and many times the right choice) –
for this step of data science work.

Since Jupyter kernels, the processes backing a notebook’s
execution, retain their internal state while the code is
being edited and revised, they’re a highly interactive, fast-
feedback environment.

However, while convenient, Jupyter notebooks can be
hard to reason about exactly because of this retention
of state, since the state of your environment may have
changed in a non-linear fashion (or worse yet, left in an
inconsistent state) after re-evaluation of an earlier cell. It’s
entirely possible to have a saved notebook that can’t be
successfully evaluated after relaunching the kernel.

Since production-grade code is supposed to be easily
tested and reviewed, as we’ve learned as an industry, this
isn’t desirable at all.

It can also be difficult to keep track of the exact versions
of dependencies you’ve used during development. For
instance, a model that worked fine with a certain version of
TensorFlow might not run at all with a newer one down the
line, and it’s tedious to try and figure out what exactly was
being run at the time of exploration.

JUPYTER NOTEBOOK IN PRODUCTION. OR NOT..

Let’s assume you’ve played nice and been fastidious
enough to not run into these problems – all your
dependencies are locked down and you’ve found out

/ FROM NOTEBOOK TO PRODUCTION

8

that you can actually run your notebook non-interactively
with jupyter nbconvert --to notebook --execute notebook.
ipynb and maybe pipe the output into a file, for tracking
results. You’ll inevitably want to run your training code
using different parameters (say, learning rates, network
structures, etc.); jupyter nbconvert --execute isn’t really
conducive for that, and editing the notebook, or maybe a
separate configuration file, to change constants is just silly,
too.

These are some of the reasons why we advocate for using
regular, linear Python scripts instead of Jupyter/IPython
notebooks when going from initial exploration work to
something resembling production. Another thing is that
you get to develop using your favorite editor/IDE, be it vim
or Emacs or VSCode or PyCharm (which, by the way, has
an excellent Scientific Mode), instead of being confined to
a browser. Switching from notebooks to regular code also

/ FROM NOTEBOOK TO PRODUCTION

9

lets you refactor your solution to a more modular, more
easily testable and reviewable package.

Of course there are drawbacks; development is less
interactive, and since there is no persistent state,
everything needs to be evaluated or loaded from scratch
at every invocation of your script. On the other hand this
property makes you think about preprocessing your data
to a faster-to-load format earlier. When you extract the
preprocessing code from other code, it becomes easier to
maintain and more reproducible, as well.

/ FROM NOTEBOOK TO PRODUCTION

@joelgrus talked about this same topic at
JupyterCon2018! The slides are hilarious

and you can check them here.

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1

10

WHAT CAN DATA
SCIENTISTS LEARN
FROM SOFTWARE
ENGINEERS?

If developers used to be the rock stars of
the dotcom era, Data Scientists are quickly
overtaking them as the new Whitesnake cover
bands of the 2020s. Although both might be
sporting the same hobo beards, Data Scientists
are getting their work done with just sticks and
stones as their tools while us Software Engineers
have every tool in the universe.

DATA SCIENCE TOOLS

Data Scientists may be building the next Tower of Babel
for all we know, but they’re stuck with steam engines and
pitchforks as their tools.

Where software engineers couldn’t live without version
control for code, reality for data scientists too often
is manual bookkeeping of experiment data, model
algorithms, testing environments and training parameters

11

in an Excel file tossed around over Slack to other team
members.

/ LEARN FROM SOFTWARE ENGINEERS

When Software Engineers want to deploy an app to
production, they don’t need to build their own servers
anymore – they just deploy to the cloud. Data Scientists,
on the other hand, too often have dance a rain dance
before training their models on a server. They need to
SSH into a server, install the latest Nvidia drivers, Python
dependencies and a clusters of 100 GPUs hosting docker
containers over Kubernetes. Software engineers would
know how to do it, but the difference is, that’s their job.

Guess how relevant this is for getting data scientists’ job
done and how much more they could get done if they
could just double the 10% they spend on actual machine
learning algorithms?

And it doesn’t stop here. Let’s look at team collaboration
tools and methodologies. When software engineers use
JIRA and go agile, data scientists need to invent their own
ways. Imagine if you had to re-learn everything every time
you switched projects!

“Geez,
thanks..

12 / LEARN FROM SOFTWARE ENGINEERS

THE ML INFRASTRUCTURE AT FACEBOOK, AMAZON,
NETFLIX, GOOGLE ET.AL.

Most big players in machine learning have seen this
problem and started solving it for themselves. For example,
Über has built their own Michelangelo toolset for doing
version control and server management. Likewise Airbnb
has Bighead, Netflix has something of their own, as do
Google and Facebook. These are all in-house proprietary
toolsets to make sure their data scientists’ time is not
wasted on pipeline orchestration and management tools.

Not every company however has the muscles to invest into
ML orchestration and many large corporations still fail to
see big impact it will have on business. As a result these
early movers have a huge advantage over the rest — not
to mention how impossible it will be for startups to get
started when most of your time goes into building tools for
themselves.

Unlike software engineering, data science is not a simple
if-clause somebody wrote in a stored procedure in 1979
running on your DB2, but because the world changes and
data changes, you constantly need to re-train the models.

13

THE KNIGHT ON THE WHITE HORSE

There are however solutions that don’t involve inventing
everything yourself.

For example here at Valohai we’re in the business of
building the same tools for the masses that the big
players have built in-house for themselves. You could of
course build it yourself as well – and at the end of the
day you already know what to build: Version control,
server orchestration and support for ML frameworks and
distributed learning.

The important thing is you’ll have something to help you
concentrate on your actual work: Building predictive
models.

/ LEARN FROM SOFTWARE ENGINEERS

14

HOW TO MAKE
REPRODUCIBLE
EXPERIMENTS?

The key to reproducible experiments is proper
version controlling. Most companies today are
able to systematically store only the version
of code. Some more advanced teams have a
systematic approach to store and version the
models but almost none are able to go beyond
that.

Systematic means an approach where you are able to take
a model in production and look at the version of code
that was used to come up with that model and that this is
done for every single experiment, regardless if they are in
production or not.

Find a version controlling test on the next page. Cross a
box if you save and archive respective information from
every experiment.

How many boxes did you check?

INPUT
TRAINING CODE

PARAMETERS

DATASET

EXECUTION
USED HARDWARE

ENVIRONMENT

EXPERIMENT COST

OUTPUT
MODEL

LOGS

RESULTS

STATISTICS

How many boxes did you check?

Yes, we store
this information

16

TRAINING CODE

The exact version of code used for running this experiment.
This is usually the easiest, as it can be mostly solved by
doing regular software development version control, with
Git for instance.

PARAMETERS

One of the important things in running and replicating
an experiment is knowing the (hyper)parameters for that
particular experiment. Storing parameters and being able
to see their values for a particular model over time will
also help gain insights and intuition on how the parameter
space affects your model. This is exceptionally important
when team gorws.

DATASETS

Versioning and storing datasets is one of the most
difficult problems in the machine learning version control,
especially when datasets grow in size and just storing full
snapshots is no longer an option.

At the same time it is also one of the most important
things to store for reproducibility and compliance
purposes, especially in light of new and upcoming laws
that will increase the requirement for backtracking the
decisions done by machine learning models and model
fairness.

USED HARDWARE

Storing hardware environments and statistics serves two

/ WHAT TO STORE FROM ML EXPERIMENT

17

purposes: Hardware optimization and reproducibility.
Especially if you are using more powerful cloud hardware
it is important to get easy visibility to hardware usage
statistics.

It is way too easy and common today to use large GPU
instances and not utilize them to their full extent.

 It should be easy to see the GPU usage and memory
usage of machines without having to manually run checks
and monitoring. This will optimize usage of machines and
help debug bottlenecks.

The difficulty of reproducibility should not increase one
bit when experiments grow in scale and executions are
done on multi node clusters. New team members should
be able to train the same models on new sets of data with
just looking at the configuration and running an execution.
Especially deep learning with large data can easily require
a setup of several multi-GPU machines to run and this
should not bring any kind of overhead to actually running
the code. Looking at the history can also help you choose
the right cluster size for optimal training time for future
runs.

ENVIRONMENT

Package management is difficult but completely
mandatory to make code easy to run. We have seen great
benefits in a container based approach and tying your
code to a Docker image that can actually run it will greatly
speed up collaboration around projects.

/ WHAT TO STORE FROM ML EXPERIMENT

18

EXPERIMENT COST

The cost of experiments is important in assessing and
budgeting machine learning development. Charging
granularity in existing clouds using servers shared
within a team does not give you useful insights to actual
experiment amounts and cost per experiment (CPE). Worst
case, you can have multiple teams working within the
same cost structure. This makes it impossible to assess the
usefulness of investments per project.

MODEL

Model versioning means a good way to store the outputs
of your code. The model itself is usually small and relatively
easy to store, but the difficult part is bringing the model
together with all the other things listed in this post.

LOGS

Training execution time logs are essential for debugging
use cases but they can also provide important information
on keeping track of your key metrics like accuracy or
training speed and estimated time to completion.

RESULTS

Storing a model without results usually does not make a
lot of sense. It should be trivial to see the performance and
key results of any training experiment that you have run.

Valohai saves and archives all this information
making everything version controlled and 100%
reproducible.

/ WHAT TO STORE FROM ML EXPERIMENT

DEEP LEARNING
MANAGEMENT

PLATFORM

Try Valohai today and
unlock the free features!

VALOHAI.COM

http://valohai.com

20

THE RIGHT TOOLS FOR
MACHINE LEARNING

If machine learning is a team sport, machine
learning platforms must be the playing fields.
And to up your machine learning game, you must
have the proper environments to do it.

Machine learning platforms are services that support
organizations developing machine learning solutions and
there are multiple companies developing such tool. What
are the best platforms and how to choose the right one for
you? These platforms focus on one or more components of
a ​machine learning system​​; 1) managing data, 2) building
models, and 3) serving predictions.

As the terminology used with various machine learning
offerings can be quite convoluted, let’s start by untwining
the high-level terms first.

Simply put, you can think of ​analytics platforms, data
science platforms, machine learning platforms, ​​and​ deep
learning platforms​​ as synonyms.

21

Machine Learning as a Service (MLaaS)​​ providers offer
API-based microservices with pre-trained models and pre-
defined algorithms such as Google Cloud Vision API or
Amazon’s Rekognition services.

Terms together is an enormous, confusing ball of jargon
yarn even for the most educated people, especially as
most of the terms haven’t been generalized yet, making
marketing materials patchwork of gobbledygook.

/ CHOOSE THE RIGHT TOOLS

The main thing that differs is the core focus; deep learning
platforms offer GPUs for neural network training while data
science platforms focus more on traditional data science
like decision trees and linear regressions. The specific
terminology is more of a marketing thing.

MACHINE LEARNING SYSTEMS

22

MACHINE LEARNING PLATFORM CATEGORIES

Machine learning platforms can be grouped into seven
broad categories based on their core focus

Business Intelligence​​ data science platforms analyze
common business information – we are talking about
market research, website visitor information, sales
numbers, financial records or anything that most
companies record already. Point-and-click interfaces and
predefined algorithms are the main common feature with
all of these platforms. Easy to use, expensive to buy, favor
domain expertise over data science and assume deeper
partnership with the service provider.

Data Management​​ platforms focus on storing and querying
your data. They are your best bet if you are e.g. proficient
in writing Spark jobs but don’t have the in-house expertise
or capacity to maintain big data clusters.

Digitalization​​ data science platforms focus on digitalization
of manufacturing or other more traditional companies by
data automation, usually involving predictive maintenance,
productivity bottleneck detection, and uptime predictions.
The type of the analyzed data is domain specific, e.g.,
machine sensor information or vehicle fuel usage.

Infrastructure​​ data science platforms feel more like IaaS
providers than PaaS or SaaS. This category is in many ways
the opposite of business intelligence platforms, requiring
a lot of additional glue code to get your machine learning
system going. They are ideal for organizations requiring
highly customized solutions.

/ CHOOSE THE RIGHT TOOLS

23

Lifecycle Management​​ platforms focus on the projects
and workflows to build machine learning solutions. You
define the problem scope, acquire/explore/transform the
related data, create/validate/optimize solution hypotheses
by modeling and finally deploy/version/monitor the
prediction-giving model. These are the most full-fledged
end-to-end services that require only a modest amount of
glue code while not sacrificing too much extensibility.

Notebook hosting​​ platforms focus on offering Jupyter
notebooks or RStudio workspaces for exploratory data
analysis. These are naturally the first places to start as an
individual data scientist, but shared notebooks can cause
compounding technical debt to your machine learning
system if they remain your primary way of versioning and
delivering machine learning code.

Record-keeping​​ platforms focus on visualizing machine
learning pipeline steps and keeping history on what each
artifact, like a model, consists of. These platforms rarely
actually run any code, they mainly work as an add-on that
plugs in to get reporting rolling.

Note that these categories aren’t exclusive.​​ For example,
business intelligence platforms can include handling of big
data, and they frequently do, but the categorization helps
to find the core focus of the platform compared to the
other services.

/ CHOOSE THE RIGHT TOOLS

24

Service/
Provider

Category Focus areas

Azure ML
Studio

Business
Intelligence

point-n-click graphs

Magellan
Blocks

Business
Intelligence

point-n-click graphs

Pachyderm Data Management
container-based, data
pipelines, collaboration

MapR Data Management
hadoop-based,
performance, customization

MAANA Digitalization
point-n-click,
industry uptime

Uptake Digitalization
point-n-click, process
automation

Spell Infrastructure deep learning

Google ML
Engine

Infrastructure
deep learning
(TensorFlow), DIY

Valohai
Lifecycle
Management

deep learning,
collaboration, optimization,
deployment

cnvrg.io
Lifecycle
Management

deep learning, collaboration

Azure
Notebooks

Notebook Hosting exploration

Domino
data lab

Notebook Hosting
exploration, collaboration,
modeling

Comet Record-keeping
visualization, record-
keeping

/ C
H

O
O

S
E

 T
H

E
 R

IG
H

T
 T

O
O

L
S

25

MACHINE LEARNING
INFRASTRUCTURE FOR
EVERYONE

WHY SHOULD YOU UNDERSTAND THE CONCEPT?

Currently data scientists, who should concentrate on
valuable AI development, need to do lots of DevOps work
before they are ready to do the thing they do best: playing
with the data and algorithms. Larger companies like Uber
and Facebook have built their competitive advantage
around machine learning and have proper tools and
processes in place, but it has taken years to build those.

Majority of companies are left out as they don’t have the
knowledge nor the resources to build an efficient and
scalable machine learning workflow. The gap between big

Machine learning infrastructure is one of the
biggest things to concentrate on when building
production level machine learning models. If
you have a business background and want to
understand the requirements of machine learning
development, continue reading.

26

and small players grows.

This is the reason why companies (Yes, yours too.) need
to have a mutual understanding between the business
development and data scientist teams on what it really
takes to build production level machine learning. Building
and managing the machine learning infrastructure is one
big part of the development work and it is not going to
directly bring in any revenue for the company, but the
good news is that it can be automated.

WHAT IS THIS MACHINE LEARNING
INFRASTRUCTURE THEN?

The image here illustrates the scale and different parts that
needs to be taken into consideration in machine learning
development. Machine learning code is that small black box
in the middle but the required infrastructure is vast and

Source: Google Research Team
“Hidden Technical Debt in Machine Learning Systems”

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems

27

very complex. Valohai helps tackle all of this extraneous,
but inevitable, infrastructure around the actual revenue
generating ML code.

WHEN DO WE NEED INFRASTRUCTURE
MANAGEMENT?

Proper tools and processes to manage infrastructure
aren’t only for saving data scientists’ time, but it becomes
particularly useful when finalized models don’t perform
as planned. You probably have heard about the recent
unfortunate incident when an Uber self-driving car drove
over a pedestrian. Another example of an unwanted end
result is a face recognition model that recognized only
people with white skin tones as people.

In both of these examples, an explanation for the
malfunctioning model is required in order to fix the flaws.
There might be some problem with the data or with
preprocessing it, or maybe some parameters worked better
than others. It is not a foregone conclusion that machine
learning teams actually have proper history available.

To drive the point home, here are couple real life examples
of data scientist teams’ uneffective version control.

One team of hundred data scientists kept track of their
models by posting the binary file of the model into a Slack
channel. Compare this to a situation where sales people
would not have any CRM and they would just jot their
client history down to a Slack channel and try to find notes
from there later on. Sounds insane, right?

28

One member of a 50 person machine learning team keeps
track of executions in an Excel sheet that is located on
his own computer. This can be compared to a situation
where a salesman would have a spreadsheet on his own
laptop and no other sales team member would know what
companies has been contacted and what has been the
end result of the meetings. And an even more accurate
comparison would be if a salesman would write all different
hypotheses of the end results of his every single customer
to the spreadsheet. Data scientists can have multiple
scenarios regarding one data set and all of these should be
tracked somehow.

Now have a discussion with your machine learning
team about how they store different versions of their
experiments. If their answer is something similar to the
examples above, make a plan how to streamline their work.

Register today and try the

deep learning management

platform for free.

VALOHAI.COM

http://valohai.com

	Introduction
	Staffing the machine learning team
	Level up your ML code
	From notebook to production
	What can data scientists learn from software engineers?
	How to make reproducible experiments?
	The right tools for machine learning
	Machine learning infrastructure for everyone

